MA 114 Worksheet #07: Sequences

- 1. (a) Give the precise definition of a sequence.
 - (b) What does it mean to say that $\lim_{x \to a} f(x) = L$ when $a = \infty$? Does this differ from $\lim_{n \to \infty} f(n) = L$? Why or why not?
 - (c) What does it means for a sequence to converge? Explain your idea, not just the definition in the book.
 - (d) Sequences can diverge in different ways. Describe two distinct ways that a sequence can diverge.
 - (e) Give two examples of sequences which converge to 0 and two examples of sequences which converges to a given number $L \neq 0$.
- 2. Write the first four terms of the sequences with the following general terms:
 - (a) $\frac{n!}{2^n}$ (b) $\frac{n}{n+1}$ (c) $(-1)^{n+1}$ (d) $\{a_n\}_{n=1}^{\infty}$ where $a_n = \frac{3}{n}$. (e) $\{a_n\}_{n=1}^{\infty}$ where $a_n = 2^{-n} + 2$. (f) $\{b_k\}_{k=1}^{\infty}$ where $b_k = \frac{(-1)^k}{k^2}$.
- 3. Find a formula for the nth term of each sequence.
 - (a) $\left\{ \frac{1}{1}, -\frac{1}{8}, \frac{1}{27}, -\frac{1}{64}, \dots \right\}$ (b) $\left\{ 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots \right\}$ (c) $\{1, 0, 1, 0, 1, 0, \dots\}$ (d) $\left\{ -\frac{1}{2}, \frac{2}{3}, -\frac{3}{4}, \frac{4}{5}, -\frac{5}{6}, \dots, \right\}$
- 4. Suppose that a sequence $\{a_n\}$ is bounded above and below. Does it converge? If not, find a counterexample.
- 5. The limit laws for sequences are the same as the limit laws for functions. Suppose you have sequences $\{a_n\}$, $\{b_n\}$ and $\{c_n\}$ with $\lim_{n\to\infty} a_n = 15$, $\lim_{n\to\infty} b_n = 0$ and $\lim_{n\to\infty} c_n = 1$. Use the limit laws of sequences to answer the following questions.
 - (a) Does the sequence $\left\{\frac{a_n \cdot c_n}{b_n + 1}\right\}_{n=1}^{\infty}$ converge? If so, what is its limit? (b) Does the sequence $\left\{\frac{a_n + 3 \cdot c_n}{2 \cdot b_n + 2}\right\}_{n=1}^{\infty}$ converge? If so, what is its limit?

Math Excel Worksheet #7: Introduction to Sequences

1. Match each sequence with its general term:

$\{a_1, a_2, a_3, a_4,\}$	General Term
$(a) \left\{ \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots \right\}$	(i) $\cos(\pi n)$
$(b) \left\{ -1, 1, -1, 1, \dots \right\}$	(ii) $\frac{n!}{2^n}$
$(c) \left\{ 1, -1, 1, -1, \dots \right\}$	(iii) $(-1)^{n+1}$
$(d) \left\{ \frac{1}{2}, \frac{2}{4}, \frac{6}{8}, \frac{24}{16}, \dots \right\}$	(iv) $\frac{n}{n+1}$

2. Let $a_n = \frac{1}{2n-1}$ for $n = 1, 2, 3, \cdots$. Write out the first three terms of the following sequences.

(a)
$$b_n = a_{n+1}$$

(b) $c_n = a_{n+3}$
(c) $d_n = a_n^2$
(d) $e_n = 2a_n - a_{n+1}$

- 3. Suppose that $\lim_{n \to \infty} a_n = 4$ and $\lim_{n \to \infty} b_n = 7$. Determine the following:
 - (a) $\lim_{n \to \infty} (a_n + b_n)$ (b) $\lim_{n \to \infty} a_n^3$ (c) $\lim_{n \to \infty} \cos(\pi b_n)$ (d) $\lim_{n \to \infty} (a_n^2 - 2a_n b_n)$
- 4. Suppose you know that $\{a_n\}$ is a decreasing sequence with $5 \le a_n \le 8$ for all a_n . Why must this sequence have a limit? What can you say about the value of the limit?